
On The Computational Cost of FFT-Based Linear Convolutions

David H. Bailey

07 June 1996

Ref: Not published

Abstract

The \linear convolution" of two n-long sequences x and y is commonly performed by
extending the input sequences with zeroes to length 2p, where p is the smallest power of two
greater than or equal to n, and then evaluating the circular convolution of these sequences
using power-of-two FFTs. This approach clearly favors power-of-two input sequences sizes,
with abrupt increases in computational cost when the size exceeds a power of two.

In this article, a recursive technique is presented for e�ciently computing linear convo-
lutions for any size n, even if one uses power-of-two FFTs as the underlying computational
engine. The computational cost for this technique is never greater than the conventional
approach and usually signi�cantly less. Further, the computational cost as a function of n
is highly continuous, so that linear convolutions of sizes somewhat larger than a power of
two, for example, are only slightly more expensive than linear convolutions of power-of-two
length data.

D. Bailey: NASA AmesResearch Center, Mail Stop T27A-1, Mo�ett Field, CA 94035-1000.
E-mail: dbailey@nas.nasa.gov.

1



Introduction

Consider the problem of computing the \linear convolution" fzk; 0 � k < 2ng of the
n-long real sequences fxk; 0 � k < ng and fyk; 0 � k < ng:

zk =
X

0�i;j<n; i+j=k

xiyj 0 � k < 2n

Convolutions of this form appear in many scienti�c applications, for example in solutions
of large two- and three-dimensional partial di�erential equations [4, 7], and in fast schemes
to perform multiple precision multiplication [2].

The linear convolution result can alternately be de�ned in terms of the \circular con-
volution", as follows. Extend the input sequences x and y with zeroes to length 2n. Then
the linear convolution of the original n-long sequences x and y is the same as the circular
convolution of the extended 2n-long sequences, namely

zk =
2n�1X

j=0

xjyk�j 0 � k < 2n

where the subscript k � j is interpreted as k � j + 2n if negative.

Conventional Approaches

For the purposes of this discussion, we will assume that a linear convolution is evaluated,
for larger n, by the usual scheme of extending the x and y sequences with zeroes as above,
and then evaluating the resulting circular convolution using discrete Fourier transforms
(DFTs) over the complex number �eld [3, pg. 85]:

zk = F�1k [Fj(x) � Fj(y)]

where Fj(�) denotes the 2n-point forward DFT of x, and F�1j (�) denotes the inverse DFT.
The notation Fj(x) � Fj(y) means that the two 2n-long complex DFT result vectors are
multiplied term by term, and the resulting 2n-long complex vector is the input to the
inverse DFT.

We will further assume that these DFTs are performed using fast Fourier transforms
(FFTs) in an e�cient manner. One commonly used e�cient scheme is to compute the two
forward FFTs using the real-to-complex variant of an FFT, and to compute the inverse
FFT by using the complex-to-real variant [6, pg. 215-228]. The computational cost of
either of these variants is approximately one half the cost of a complex-to-complex FFT of
comparable size. Further, the result of a forward real-to-complex variant FFT is conjugate
symmetric, so the term-by-term complex multiply operation indicated above need only be
performed on n + 1 complex pairs instead of 2n. Since, according to the conventional
reckoning, a complex FFT of size 2r requires 5r2r 
oating-point arithmetic operations, we
then have a total of 3� 5

2
�(r+1)2r+1+6�(2r+1) � (15r+21)2r operations for the evaluation

of a linear convolution on input sequences of length n = 2r, using the above scheme.
This analysis assumes that the input size n is a power of two. Linear convolutions can

be performed using the above scheme when n is not a power of two, provided that one

2



extends the sequences x and y with zeroes to length 2p, where p is the smallest power of
two length greater than n, and performs FFTs of size 2p. This is the usual approach.

Another approach is to use \mixed radix" FFTs, namely FFTs that transform data
of sizes that are not purely powers of two, but include other integer factors such as three
and �ve. This increases the number of admissible transform sizes, but most sizes remain
inadmissible. More importantly, power-of-two FFTs are often the only FFTs available in
the form of highly tuned vendor-supplied library routines. These are among the reasons
that most FFT applications still employ power-of-two FFTs. Scientists computing linear
convolutions thus generally assume that if one wants to compute the linear convolution of
even 2r + 1 data points, one needs to use FFTs of size 2r+2, which is double the FFT size
(2r+1) that su�ces for linear convolutions of input sizes up to and including 2r. In other
words, the computational cost of this approach as a function of the input size n has abrupt
discontinuities when n is one greater than a power of two, and is essentially 
at between
discontinuities.

A New Approach

However, there is a faster means of computing linear convolutions for input sizes sizes n
that are not powers of two, even if one sticks to using power-of-two FFTs as the underlying
computational engine. This can best be illustrated by means of an example. Consider the
case n = p + 2, where p = 2r (so that xp; xp+1; yp and yp+1 are potentially nonzero). First
extend the sequences x and y with zeroes to length 2p = 2r+1 (instead of to length 2r+2 as
in the conventional procedure for inputs of this size). Then apply forward and inverse FFTs
to the extended sequences x and y to produce the circular convolution of these extended
sequences, which is the following:

z0 = x0y0 + xp�1yp+1 + xpyp + xp+1yp�1

z1 = x0y1 + x1y0 + xpyp+1 + xp+1yp

z2 = x0y2 + x1y1 + x2y0 + xp+1yp+1

z3 = x0y3 + x1y2 + x2y1 + x3y0

� � � = � � �

zp = x0yp + x1yp�1 + � � � + xpy0

� � � = � � �

z2p�1 = xp�2yp+1 + xp�1yp + xpyp�1 + xp+1yp�2

This result di�ers from the desired 2n-long linear convolution of x and y in two respects:
(1) the initial three values (z0; z1 and z2) are \corrupted" with some additional terms, and
(2) the �nal four members of the sequence are missing. These four missing values are

z2n�4 = z2p = xp�1yp+1 + xpyp + xp+1yp�1

z2n�3 = z2p+1 = xpyp+1 + xp+1yp

z2n�2 = z2p+2 = xp+1yp+1

z2n�1 = z2p+3 = 0

3



Ignoring the last zero value, these three expressions are exactly the values that have \cor-
rupted" the �rst three elements of the desired z sequence. Thus by separately computing
these three expressions, one can correct the z sequence to the desired 2n-point linear
convolution result. Note that these three values can be obtained by computing a linear
convolution on the sequences �x = fxp�1; xp; xp+1g and �y = fyp�1; yp; yp+1g and discarding
the �rst two elements of the six-long result.

It is clear from this example that this technique can be extended to evaluate the linear
convolution of sequences of size n = p + m for any m < p = 2r. First extend the n-
long input sequences with zeroes to length 2p, and obtain the 2p-long circular convolution
result by using FFTs. Then compute the \correction" sequence by performing a linear
convolution on the (2m � 1)-long sequences �x = fxp�m+1; xp�m+2; � � � ; xp+m�1g and �y =
fyp�m+1; yp�m+2; � � � ; yp+m�1g. From the resulting (4m � 2)-long result sequence, discard
the �rst 2m�2 values as well as the �nal (zero) value, and then correct the 2p-long sequence
to the desired 2n-long sequence as indicated above.

But clearly there is no point in doing this for m much larger than 2r�1, because for
this value of m the size of the correction convolution is roughly the same as the size of the
2r-point convolution, and two linear convolutions of this size are nearly as expensive as a
single linear convolution on inputs of size 2r+1. In other words, the conventional approach
of using FFTs of size 2r+2 is more e�cient once m is larger than about 2r�1.

The procedure that has been de�ned here can be applied recursively on the linear
convolution of size 2m � 1, thus obtaining a recursive algorithm for linear convolutions
that is never less e�cient, and usually more e�cient, than the conventional scheme of
using FFTs of size 2r+2. Of course one does not use the FFT-based scheme once n < 64
or so, since linear convolutions of such small sizes can be evaluated explicitly at lower cost
than by applying FFTs. Note also that whenever a small linear convolution of size n is
part of a larger linear convolution calculation being performed by the above scheme, only
the second half of the result sequence needs to be computed | to be precise, only elements
indexed n� 1 through 2n � 2 need to be computed.

Computational Cost

Let C(n) be the computational cost, in 
oating-point operations, of performing a linear
convolution on inputs of size n using the above scheme, and let D(n) be the cost of
computing only the second half of the 2n-long result sequence (see above for the precise
statement of which values must be computed). Since the FFT procedure produces both
halves of the result whether or not both are needed, D(n) = C(n) whenever n � 64. When
n < 64, however, we have C(n) = n2 + (n � 1)2 and D(n) = n2. We can now summarize
this recursive algorithm as follows. To compute a linear convolution of size n = 2r +m,
where 2r is the largest power of two not exceeding n:

If n < 64 then evaluate the linear convolution of x and y explicitly [C(n) = n2+(n�1)2], else
if n = 2r then apply the conventional FFT-based scheme [C(n) = (15r+21)2r], else apply
the \correct" scheme described above [C(n) = minfC(2r) +D(2m � 1) + 2m;C(2r+1)g].

4



The function C(n) is recursively de�ned by this algorithm statement. The graph of C(n)
is rather interesting | not only does it avoid the abrupt discontinuities of the conventional
cost function, but it also has an intriguing fractal structure reminiscent of the Cantor
function [5, pg. 48]. A plot of this function from n = 65 to n = 65; 536 is shown in Figure
1.

This algorithm has recently been implemented in the Fortran-90 version of the au-
thor's multiprecision package [1]. This feature now removes a signi�cant weakness of the
\advanced" (extra-high precision) routines from this package, namely the restriction to
precision levels that correspond to power-of-two vector lengths. Now the advanced rou-
tines can be e�ciently used for a wide variety of precision levels. As expected, run times
for various calculations follow the general form of the graph of C(n) shown in Figure 1.

References

[1] David H. Bailey, \A Fortran-90 Based Multiprecision System", ACM Transactions on

Mathematical Software, vol. 21, no. 4 (Dec. 1995), pg. 379{387.

[2] David H. Bailey, \Multiprecision Translation and Execution of Fortran Programs",
ACM Transactions on Mathematical Software, vol. 19, no. 3 (Sept. 1993), pg. 288{319.

[3] William L. Briggs and Van Emden Henson, The DFT: An Owner's Manual for the

Discrete Fourier Transform, SIAM, Philadelphia, 1995.

[4] Robert S. Rogallo, \Numerical Experiments in Homogeneous Turbulence",NASAAmes

Technical Memorandum, TM81315, Appendix B, 1981.

[5] Halsey L. Royden, Real Analysis, Macmillan, New York, 1968.

[6] Charles Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM,
Philadelphia, 1992.

[7] Alan A. Wray and Robert S. Rogallo, \Simulation of Turbulence on the Intel Gamma
and Delta", NASA Ames Technical Memorandum, TM91xxx, 1992.

5



0 1 2 3 4 5 6 7

x 10
4

0

2

4

6

8

10

12

14

16

18
x 10

6

Figure 1: The Cost Function C(n)

6


